Problem 2.2

Two blocks and string
The two blocks M_{1} and M_{2} shown in the sketch are connected by a string of negligible mass. If the system is released from rest, find how far block M_{1} slides in time t. Neglect friction.

Solution

The strategy here is to apply Newton's second law to determine the acceleration a of block M_{1} and then to use the kinematic formula,

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2},
$$

to find how far it slides in time t. We assume that the pulley is frictionless so that the tension T in each part of the string is the same. Draw the free-body diagram of each block.

Newton's second law states that the sum of the forces is equal to mass times acceleration.

$$
\sum \mathbf{F}=m \mathbf{a} .
$$

This vector equation represents the following two scalar equations in the chosen coordinate system.

$$
\begin{aligned}
& \sum F_{x}=m a_{x} \\
& \sum F_{y}=m a_{y}
\end{aligned}
$$

Let a denote the acceleration of block M_{1}. Because block M_{1} and block M_{2} are attached to the same string, they have the same acceleration. Block M_{2} moves in the negative y-direction,
though, so it has acceleration $-a$. Apply Newton's second law to each block.

$$
\begin{array}{cc}
\text { Block } M_{1} & \text { Block } M_{2} \\
\sum F_{x}=T=M_{1} a & \sum F_{x}=0=M_{2}(0) \\
\sum F_{y}=N-M_{1} g=M_{1}(0) & \sum F_{y}=T-M_{2} g=M_{2}(-a)
\end{array}
$$

Solve the system of equations for a, the variable of interest, by eliminating T.

$$
\begin{gathered}
T-M_{2} g=-M_{2} a \\
M_{1} a-M_{2} g=-M_{2} a \\
M_{1} a+M_{2} a=M_{2} g \\
a=\frac{M_{2}}{M_{1}+M_{2}} g
\end{gathered}
$$

Since the acceleration is constant, we can use the kinematic formula,

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2},
$$

to find how far it moves in time t. Block M_{1} starts from rest, so $v_{0}=0$.

$$
x=x_{0}+\frac{1}{2} a t^{2},
$$

Bring x_{0} to the left side and substitute the formula for a.

$$
x-x_{0}=\frac{1}{2} \frac{M_{2}}{M_{1}+M_{2}} g t^{2}
$$

Therefore, the displacement of block M_{1} in time t, is

$$
\Delta x=\frac{1}{2} \frac{M_{2}}{M_{1}+M_{2}} g t^{2} .
$$

